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Abstract 

Features of the golden rectangle, the golden ratio, and the Fibonacci numbers can be 
extended to other rectangles by generalizing the golden ratio formula and the 
Fibonacci number sequence. In this article I will describe a process for generating 
sequences of rectangles, ratios, and number sequences that share mathematical 
properties with the golden rectangle, the golden ratio, and the Fibonacci numbers. 
You can think of one sequence of rectangles, which is based on the silver means, as 
getting progressively taller and another shorter compared to a golden rectangle, the 
first rectangle in each sequence. These sequences of rectangles exhibit generalized 
properties of the golden rectangle. I list three properties which I extend. The formula 
for the golden ratio is a special case of general formulas for these sequences. You 
can create smaller rectangles with the same proportions by removing multiples or 
unit fractions of squares, and generate spiral-like curves in the process. The 
rectangles' ratios of long side to short side are the limits of the ratios of successive 
terms in numerical sequences which are generalized Fibonacci sequences. 
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The Golden Rectangle 

The golden rectangle, a rectangle whose side lengths are in the golden ratio, has a 
number of interesting properties that have been studied since Euclid defined the 
extreme and mean ratio. [3][4][18][19]. Disregarding the usually exaggerated 
relationship of the golden rectangle to aesthetics and nature, I'll describe its 
construction then list three of its mathematical properties — ratio formula, spiral and 
number sequence: 

Construction. The golden rectangle can be constructed starting with a square, and 
using a diagonal across half the square as a radius to draw an arc that completes the 
rectangle. [15][19] 

a. Construct a unit square. 
b. Draw a line from the midpoint of one side to an opposite corner. 
c. Use that line as the radius to draw an arc that defines the long 

dimension of the rectangle. 

  

 

Ratio Formula. The golden rectangle's ratio of long side, a, to short side, b, can be 
described in a special formula: (a+b)/a = a/b. The fact that the ratio of a to b is 
equal to the sum of a and b divided by b is unique to the golden rectangle. This 
equation has a positive solution, the golden ratio, which is the irrational number 
(1+√5)/2, or approximately 1.61803398… [13][18] 

Spiral. A golden rectangle can be used to construct new, progressively smaller 
rectangles with the same proportions as the first. When a square of the smaller side 
is removed from the rectangle, a new golden rectangle is the result. Square removal 
can be repeated, while drawing quarter-circles through each removed square leads 
to an approximation of a golden spiral. (See Wikipedia, Golden rectangle for a good 
diagram of the square removal, and Wikipedia, Golden spiral for more on spirals and 
why this spiral is only an approximation of a golden spiral. [19][20] Also, see 
Weisstein, Golden Rectangle for a diagram showing that a golden spiral passes 
through the corners of squares inscribed in a golden rectangle, but is not tangent to 
the rectangle's sides. [15]) The following image is of a golden rectangle with 
quarter-circles inscribed in successively smaller squares. 
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http://en.wikipedia.org/wiki/Golden_rectangle
http://en.wikipedia.org/wiki/Golden_spiral
http://en.wikipedia.org/wiki/Golden_spiral#Approximations_of_the_golden_spiral
http://mathworld.wolfram.com/GoldenRectangle.html


 

Inscribing quarter-circles in squares of a golden rectangle is just one of many ways 
to piece together a spiral-like curve from rectangles. Markowsky pointed out that you 
can generate spiral-like curves from any rectangle, other than a square. (See 
Markowsky, page 2. [10]) In his example he repeatedly divided larger rectangles in 
half. None of these methods for creating smaller rectangles and inscribing curves to 
simulate a spiral will create a true spiral because true spirals require that points 
along the spiral move away from a fixed center at a specific rate. (See Wikipedia, 
Spiral. [21]) The formula for a true golden spiral is sufficiently complex that most 
articles about the golden rectangle, including this one, skip the formula in favor of 
the approximation.  

Number Sequence. The golden rectangle's ratio of long side to short side, the 
golden ratio, is closely related to the Fibonacci numbers. The first few Fibonacci 
numbers (sequence A000045 in the On-Line Encyclopedia of Integer Sequences, 
OEIS, or Sloane's) are: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55. [11] After 0 and 1, each 
term in the sequence is the sum of the two preceding numbers. As ever higher 
successive terms of the Fibonacci numbers are selected, the ratio of one number to 
the previous number gets closer to the golden ratio, approximately 1.61803398… 
[17] Knott shows why the Fibonacci ratios approach the golden ratio in his section, 
"The Ratio of neighbouring Fibonacci Numbers tends to Phi" [7]. 

These three properties of the golden rectangle — three of the most interesting 
mathematical features — are shared by two sequences of rectangles that I describe 
below. You can think of the golden rectangle as the beginning of these two 
sequences. Imagine each rectangle in both sequences having a short side equal to 
the short side of a golden rectangle. In the first sequence, each rectangle becomes 
progressively taller. Each rectangle in the second sequence becomes progressively 
smaller, approaching a square. The formulas for the ratios of long side to short side 
and for the number sequences associated with the rectangles are general formulas 
with the golden rectangle being a special case. 

First Sequence of Rectangles 

I based the first sequence of rectangles on the silver means. Each ratio in this 
sequence is derived from a general formula for the values of the silver means: 

 

where n are the consecutive integers, 1, 2, 3... [7][14]  

Construction, First Sequence. I construct rectangles in the first sequence by 
starting with a unit square. After the golden rectangle, instead of using a diagonal 
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across half the square to draw an arc that completes the rectangle, I draw a diagonal 
across a full square for the first rectangle. I add half a square and use a diagonal 
across the one and a half squares for the arc of the second rectangle. I add another 
half-square and use a diagonal across the two squares for the arc of the third. 
Following this process should create an infinite number of rectangles which are 
progressively taller. See Figure 1. 

Example — Construction of the second rectangle in the sequence, after the golden 
rectangle: 

a. Construct a unit square. 
b. Add one half of a unit square on top of the first. 
c. Draw a line from one corner to the opposite corner of the one and one half 

unit squares. 
d. Use that line as the radius to draw an arc that completes the long 

dimension of the rectangle. 

 

A similar process of construction can be repeated for each successive rectangle by 
adding an additional half-square. There is a formula that corresponds to this process 
of defining the long side. Since the construction process uses a unit square for the 
short side, a formula for the long side also describes the rectangle's proportions, and 
provides the solutions in Table 1. 

With the short side, b, as a unit square, the long side, a, is the number of half unit 
squares, n, used to construct the rectangle plus the length of the diagonal used to 
complete the long dimension: 

 

Simplified, this formula becomes the same as the general formula for the silver 
means that this sequence of rectangles is based on:  

 



Therefore, the number of half unit squares, n, used to construct the rectangle 
determines the proportions and the solution. For n half unit squares = 1, this 
equation has the solution (1+√5)/2, the golden ratio. For n = 2, 3, and so on, the 
solution matches the desired values in Table 1. Since the long side length is based 
on the number of half-unit squares used to construct the rectangle, then for every n 
half-unit squares we can construct the nth rectangle in the sequence. 

Note: In this sequence, to simplify equations I use m in formulas that call for a 
sequence of variables starting at 0. In other formulas I use n when the starting 
variable is 1 to avoid complicating formulas with m+1. For the same rectangle, n 
corresponds to m, and n equals m+1. 

These rectangles have the following properties — ratio formulas, spirals, number 
sequences — in common with the golden rectangle. 

Ratio Formulas, First Sequence. I can describe the rectangles' ratios of long side, 
a, to short side, b, in formulas which are generalizations of the formula for the 
golden ratio. The golden ratio formula is a special case of the same sequence of 
formulas. Whereas the formula for the golden ratio is (a+b)/a = a/b, the general 
ratio formula for this sequence of rectangles is: 

(a + b)/(a – mb) = a/b  
 
where m is an integer designating the rectangle in the sequence. For the golden 
ratio, m is zero. The formula for the first in this sequence of rectangles, after the 
golden rectangle, is: (a+b)/(a–b) = a/b. The second is: (a+b)/(a–2b) = a/b. For 
each successive formula in the sequence increase m by one. See Table 1. 

These ratio formulas have a positive solution. The first is: 1 + √2, or approximately 
2.41421356… See Table 1 for the first eight solutions in the sequence. 

It will be helpful to convert the general ratio formula above to an equation in terms 
of m, to show that for every m in the ratio formula there is a corresponding solution 
matching the construction and the solutions in Table 1. 

I'll use a variation of a method from Wikipedia for calculating the golden ratio. [18] 
First I set the equation to a ratio, X. 

(a + b)/(a – mb) = a/b = X 

The right equation shows that a = bX, so I can substitute bX for a in the left 
equation. 

(bX + b)/(bX – mb) = bX/b 

Now I rearrange terms and simplify. 

b²X + b² = b²X² – mb²X 
X + 1  = X² – mX 

X² – (m + 1)X– 1  = 0 

Expressing this as a quadratic formula gives the solution for X: 

http://en.wikipedia.org/wiki/Golden_ratio#Calculation
http://en.wikipedia.org/wiki/Quadratic_equation


 

Therefore, for every m designating a rectangle in the ratio formula there is a 
corresponding positive solution. For m = 0, this equation has a positive solution of 
(1+√5)/2, the golden ratio. For m = 1, 2, and so on, the solutions match the desired 
values in Table 1. 

The general ratio formula shares a one-to-one relationship with the construction 
method. The variable n in the construction formula corresponds to m in the ratio 
formula. Since both formulas are equivalent to a/b (or long side, a, over short side, 
b), then every construction from n unit squares corresponds to a ratio formula, and 
they both share the same positive solution. 

Spirals, First Sequence. I can use the rectangles to construct new, progressively 
smaller rectangles with the same proportions as the first. When multiples of squares 
of the smaller side are removed from the rectangle, a new rectangle with the same 
proportions is the result. Multiple square removals can be repeated. The unit squares 
to remove for each new rectangle increase from one for the golden rectangle, to two, 
three, and on for each rectangle in the sequence. Removing squares to generate a 
smaller rectangle with the same proportion is the most interesting aspect of this 
property. The fact that you can inscribe curves in each removed rectangle to 
approximate a spiral is secondary. [20] However, since much of the literature on the 
golden rectangle shows the spiral-like curve this process can create I'll show how 
this applies to the sequence of rectangles, as well. 

After the golden rectangle, the rectangles in this sequence do not generate an 
approximation of a golden spiral. Spiral-like curves from these rectangles are made 
by joining opposite corners of removed multiples of squares with a quarter-ellipse or 
a curve that appears tangent to the inscribed rectangle. Neither these nor the spiral 
from a golden rectangle are true spirals. [21] For ease of construction the curve 
inscribed within each of these examples is a quadratic Bézier curve (created with 
Adobe Flash® ActionScript™), though you could use a quarter-ellipse as well. 

 

http://en.wikipedia.org/wiki/B%C3%A9zier_curve
http://en.wikipedia.org/wiki/ActionScript


Why does the removal process in fact produce smaller rectangles with the same 
proportions? There is a formula for the process of removing n unit square lengths 
from the long side to create a new short side, making the previous short side the 
new long side. This formula is the ratio of the smaller rectangle's sides in terms of 
the larger rectangle's sides: b/(a – nb). (Note, n is the number of unit squares to 
remove.) 

For every n unit squares to remove (see Table 1) the smaller rectangle proportions 
should match the larger. From the ratio formula above, the formula for the larger 
rectangle is:  

(a + b)/(a – mb) = a/b 

I can rearrange this formula:  

ab + b² = a² – mba  
b² = a² – mba – ab  
b² = a(a – mb – b)  

b/(a – (m+1)b) = a/b 

Since m+1 equals n, the left side is the same as the ratio of the smaller rectangle in 
terms of the larger rectangle's sides, or b/(a – nb). Therefore, the smaller rectangle 
proportions are the same as the larger. 

b/(a – nb) = a/b 

n in the construction formula corresponds to n in this formula for removing unit 
squares. Since both formulas are equivalent to a/b (or long side, a, over short side, 
b), every construction from n unit squares corresponds to a process of removing n 
unit squares to generate spiraling rectangles. 

Number Sequences, First Sequence. The rectangles' ratios of long side to short 
side are approached by the ratios of successive terms in numerical sequences similar 
to the Fibonacci sequence. In the Fibonacci number sequence, after two starting 
values, each number is the sum of the two preceding numbers. The Fibonacci 
number sequence is a special case of the sequences associated with the new 
rectangles. The number sequences associated with the new rectangles are generated 
with an additional coefficient for one of the terms. In the Fibonacci sequence that 
coefficient is one. The Fibonacci sequence can be written, where n is 1, as:  

F(i) = nF(i–1) + F(i–2)  

The numerical sequences for the new rectangles can be generated by n=2, n=3, and 
so on. Each number in the sequence associated with the first new rectangle, after 
two starting values, is generated by multiplying the previous number by 2, then 
adding the number before that [Sloane A000129]. The first numbers after two 
starting values of 0 and 1 are: 2, 5, 12, 29, 70… Each number in the sequence 
divided by the previous number approaches the rectangle's ratio of long to short 
side, approximately 2.414… Each successive sequence for each rectangle is modified 
by increasing the coefficient, n, by one. 

I'll use a variation of Knott's method (see The Ratio of neighbouring Fibonacci 
Numbers tends to Phi) for relating number sequences to ratios to show proof that the 

http://www.research.att.com/%7Enjas/sequences/A000129
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ratios of successive pairs of numbers in the sequences (see Table 1) approach the 
ratio formula solutions as each sequence progresses. [7]  

The relationship of each sequence is: 

F(i) = nF(i–1) + F(i–2) 

For three successive numbers in the sequence, especially large numbers, the ratios 
are to approach the same value. Therefore, F(i)/F(i–1) will be close to F(i–1)/F(i–2). 
Assume they are the same ratio, X. 

A: X = F(i–1) / F(i–2) = F(i) / F(i–1) 

Using the relationship replace F(i) by nF(i–1)+F(i–2), and then simplify. 

F(i) / F(i–1) = (nF(i–1) + F(i–2)) / F(i–1) 
 = nF(i–1) / F(i–1) + F(i–2) / F(i–1) 

B: = n + F(i–2) / F(i–1) 

Replace F(i)/F(i–1) in A by B. 

X = F(i–1) / F(i–2) = n + F(i–2) / F(i–1) 

F(i–2) / F(i–1) is the reciprocal of X, so: 

X = n + 1/X 
X² – nX– 1 = 0 

Since m+1 is equivalent to n, this is the same as the ratio formula: 

 X² – (m + 1)X– 1 = 0 

Therefore, the ratios of successive terms in the number sequence approach the 
rectangle solutions. For n = 1, this quadratic equation, X²–nX–1 = 0, has the 
positive solution, X = (1+√5)/2, the golden ratio. For n = 2, 3, and so on, X matches 
the desired solution in Table 1. Since n in the construction formula corresponds to n 
in the quadratic equation above, every construction from n unit squares corresponds 
to a sequence. 

Continued Fractions. The first sequence of rectangles has associated continued 
fractions with patterns similar to the golden ratio: [1; 1,1,1…]. [14] After the golden 
ratio, the continued fractions for ratios in the sequence are: 

[2; 2,2,2, …] 
[3; 3,3,3, …] 
[4; 4,4,4, …] 

Second Sequence of Rectangles   

Construction, Second Sequence. I construct the second sequence of rectangles, 
like the golden rectangle, by starting with a unit square. Instead of using a diagonal 
across half the square to draw an arc that completes the rectangle, I draw a diagonal 
across a quarter square for the next rectangle, across an eighth for the next, and a 
sixteenth for the next. Following this process creates an infinite number of rectangles 



which, sharing a short side with the golden rectangle, are progressively smaller, but 
always larger than a square of the short side. (See Figure 2 and Table 2.) 

Example — Construction of the second rectangle in the second sequence, after the 
golden rectangle: 

a. Construct a unit square. 
b. Draw a line across the bottom eighth of the square.D 
c. Draw a line from one corner to the opposite corner of the eighth square. 
d. Use that line as the radius to draw an arc that completes the long 

dimension of the rectangle. 

  

 

A similar process of construction can be repeated for each successive rectangle by 
dividing the previous fraction of a square by 2 to start with a diagonal across a 
thirty-second, sixty-fourth, and so forth. There is a formula that corresponds to this 
process for defining the long side. Since the construction process uses a unit square 
for the short side, a formula for the the long side also describes the rectangle's 
proportions, and provides the solutions in Table 2.  

With the short side, b, as a unit square, the long side, a, is the sum of the fraction of 
a unit square used to construct the rectangle plus the length of the diagonal used to 
complete the long dimension: 

 

Simplified, this formula becomes: 

 

Therefore, the fraction of a unit square, 1/n, used to construct the rectangle 
determines the proportions and the solution. For a fraction of a unit square = 1/2 or 
n = 2, this equation has a solution (1+√5)/2, the golden ratio. For fractions of a unit 
square = 1/4, 1/8, 1/16, (n = 4, 8, 16), and so on, the solution matches the desired 
values in Table 2. Since the long side length is based on the fraction of a unit square 
used to construct the rectangle, which is 1/n where n is a power of 2, then for every 
nth power of 2 we can construct the nth rectangle in the sequence. 

Note: In this sequence, I use n to signify the starting variable is the first power of 2. 
I use m for variables starting at the zeroth power of 2. For the same rectangle, n 
corresponds to m, and n equals 2m. 



These rectangles have the following properties — ratio formulas, spirals, number 
sequences — in common with the golden rectangle. 

Ratio Formula, Second Sequence. I can describe the rectangles' ratios of long 
side, a, to short side, b, in formulas which are generalizations of the formula for the 
golden ratio. The golden ratio is a special case of the same sequence of formulas. 
Whereas the formula for the golden rectangle is (a+b)/a = a/b, the general ratio 
formula for the second sequence of rectangles is:  

b/(a – b/m) = a/b 

where m is a power of 2. This new formula applies to the golden rectangle when m is 
the zeroth power of 2, or 1. 

Here is an alternative version of the same formula:  

(a + mb)/ma = a/b 
a(a – b) = b2 

a/b = b/(a – b) 

The Since I have just claimed that when m = 1 the new formula applies to the 
golden rectangle, it should be equivalent to (a+b)/a. This shows that (a+b)/a = 
b/(a–b). (See Wikipedia, Golden ratio, Short proofs of irrationality [18]): 

a/b = (a + b)/a 
a2 = ab + b2 

a2 – ab = b2 

formula for the first in this sequence of rectangles, after the golden rectangle, is: 
b/(a – b/2) = a/b. The second is: b/(a – b/4). For each successive rectangle in the 
sequence increase m to the next power of 2. 

These ratio formulas have unique positive solutions. The first is: (1+ √17)/4, or 
approximately 1.281… See Table 2 for the first eight solutions in the sequence. 

I'll convert the general ratio formula above to an equation in terms of m, to show 
that for every m in the ratio formula there is a corresponding solution matching the 
construction and the solutions in Table 2, as I did for the first sequence of 
rectangles. 

First I set the equation to a ratio, X. 

b/(a – b/m) = a/b = X 

The right equation shows that a = bX, so I can substitute bX for a in the left 
equation. 

b/(bX – b/m) = bX/b 

Now I rearrange terms and simplify in three steps. 

b² = b²X² – b²X/m 
1  = X² – X/m 

http://en.wikipedia.org/w/index.php?title=Golden_ratio&oldid=174307445#Short_proofs_of_irrationality


C: X² – X/m – 1  = 0 

Expressing this as a quadratic formula gives the solution for X: 

 

Therefore, for every m designating a rectangle in the ratio formula there is a 
corresponding positive solution. For m = the zeroth power of 2, or 1, this equation 
has the positive solution of (1+√5)/2, the golden ratio. For m = 2, 4, 8, 16, and so 
on, the solutions match the desired values in Table 2. 

The general ratio formula shares a one-to-one relationship with the construction 
method. The variable n in the construction formula corresponds to a power of 2 
represented by m in a ratio formula. Since both formulas are equivalent to a/b (or 
long side, a, over short side, b), then every construction from n unit squares 
corresponds to a ratio formula, and they both share the same positive solution. 

Spirals, Second Sequence. I can use the rectangles to construct new, 
progressively smaller rectangles with the same proportions as the first. When unit 
fractions of squares of the smaller side are subtracted from the rectangle, a new 
rectangle with the same proportions is the result. The fraction of a square removal 
can be repeated. The fraction of a unit square to subtract for each new rectangle 
decreases from one for the golden rectangle, to a half, a fourth, an eighth, and on 
for each rectangle in the sequence. As I said in the first sequence, removing squares 
to generate a smaller rectangle with the same proportion is the main point. 

Like the first sequence of rectangles, those in this sequence do not generate an 
approximation of a golden spiral. Spiral-like curves from these rectangles are made 
by joining opposite corners of removed fractions of squares with a quarter-ellipse or 
a curve that appears tangent to the inscribed rectangle. Neither these nor the spiral 
from a golden rectangle are true spirals because true spirals require that points 
along the spiral move away from a fixed center at a constant rate. (See Wikipedia, 
Spiral. [21]) 

 

Why does the removal process in fact produce smaller rectangles with the same 
proportions? There is a formula for the process of removing fractions of square 
lengths from the long side to create a new short side, making the previous short side 
the new long side. This formula is the ratio of the smaller rectangle's sides in terms 
of the larger rectangle's sides: b/(a–b/m). (Note, b/m is the fraction of a unit square 
to remove.) 

http://en.wikipedia.org/wiki/Unit_fraction
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For every b/m unit squares to remove (see Table 2) the smaller rectangle 
proportions should match the larger. From the ratio formula above, the formula for 
the larger rectangle is: 

b/(a – b/m) = a/b 

The left side is the same as the ratio of the smaller rectangle in terms of the larger 
rectangle's sides. Therefore, the smaller rectangle proportions are the same as the 
larger. 

n in the construction formula corresponds to a power of 2 represented by m in this 
formula for removing unit squares. Since both formulas are equivalent to a/b (or 
long side, a, over short side, b), every construction from 1/n fractions of a square 
corresponds to a process of removing b/m unit squares to generate spiraling 
rectangles. 

Number Sequences, Second Sequence. The rectangles' ratios of long side to 
short side are approached by the ratios of successive terms in numerical sequences 
similar to the Fibonacci sequence. In the Fibonacci number sequence, after two 
starting values, each number is the sum of the two preceding numbers. The 
Fibonacci number sequence is a special case of the sequences associated with the 
new rectangles. The number sequences associated with the new rectangles are 
generated by dividing one term by a power of 2: 

F(i) = F(i–1)/m + F(i–2)  

where m is a power of 2. This applies to the golden rectangle and Fibonacci sequence 
when m is the zeroth power of 2, or 1. After the golden rectangle the numerical 
sequences for new rectangles can be generated by m=2, 4, 8, and so on, with m 
increasing each time to the next power of 2. The sequences produced are not integer 
sequences.  

Each number in the sequence associated with the first rectangle after the golden 
rectangle, is generated by dividing the previous number by 2, then adding the 
number before that. The first numbers are: 0, 0.5, 0.25, 0.625, 0.5625. Each 
number in the sequence divided by the previous number approaches the rectangle's 
ratio of long to short side, approximately 1.281… 

In these numerical sequences, the ratios of number pairs approach their rectangle's 
ratio gradually more slowly than does the Fibonacci sequence. It is necessary to 
select number pairs ever higher before it becomes apparent that the ratio of pairs is 
approaching the associated rectangle's ratio. 

I can use a version of the same proof from the first sequence of rectangles, applying 
Knott's method (The Ratio of neighbouring Fibonacci Numbers tends to Phi) to show 
that the ratios of successive pairs of numbers in the sequences (see Table 2) 
approach the ratio formula solutions as each sequence progresses. [7]  

I can replace n in the prior proof with 1/m, where m is a power of 2. Each sequence 
is: 

F(i) = (1/m)F(i–1) + F(i–2) 

http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/phi.html#fibratio


For three successive numbers in the sequence, especially large numbers, the ratios 
are to approach the same value. Therefore, F(i+2)/F(i+1) will be close to F(i+1)/F(i). 
Assume they are the same ratio, X. 

X = F(i–1) / F(i–2) = F(i) / F(i–1) 

Using the relationship replace F(i) by (1/m)F(i–1) + F(i–2), and then simplify. Since 
this is a version of the same proof from the first sequence of rectangles, except n is 
now 1/m, I'll skip to the last line.  

X² – (1/m)X – 1 = 0 

Therefore, the ratios of successive terms in the number sequence approach the 
rectangle solutions. For m = the zeroth power of 2, this quadratic equation has the 
positive solution, X = (1+√5)/2, the golden ratio. For each m = 2, 4, 8, and so on, X 
matches the corresponding solution in Table 2. Since n in the construction formula 
corresponds to a power of 2 represented by m in a quadratic equation above, every 
construction from n unit squares corresponds to a sequence. 

Continued Fractions. The second sequence of rectangles has periodic continued 
fractions. After the golden ratio, the continued fractions for ratios in the sequence 
are: 

[1; 3,1,1,3,1,1,3,1,1, …] 
[1; 7,1,1,7,1,1,7,1,1, …] 
[1; 15,1,1,15,1,1,15,1,1, …] 
[1; 31,1,1,31,1,1,31,1,1, …] 
[1; 63,1,1,63,1,1,63,1,1, …] 
[1; 127,1,1,127,1,1,127,1,1, …] 
[1; 255,1,1,255,1,1,255,1,1, …] 

Other Sequences 

The process I describe above might be used for finding more sequences of rectangles 
with the same properties. In Table 3. Third Sequence of Rectangles, I show another 
sequence of ratios and number sequences that can be used to develop rectangles 
and spirals. This sequence continues the theme started above. It differs from the 
first and second sequences above, however, in that the first ratio in the sequence is 
not the golden ratio. It is the silver ratio. [14] 

Continued Fractions. The third sequence of rectangles has periodic continued 
fractions. After the golden ratio, the continued fractions for ratios in the sequence 
are: 

[2; 2,2,2,2,2,2,2,2,2, …] 
[1; 4,1,1,4,1,1,4,1,1, …] 
[1; 6,1,1,6,1,1,6,1,1, …] 
[1; 8,1,1,8,1,1,8,1,1, …] 
[1; 10,1,1,10,1,1,10,1,1, …] 
[1; 12,1,1,12,1,1,12,1,1, …] 
[1; 14,1,1,14,1,1,14,1,1, …] 

Summary 

This completes the description of a process for generating sequences of rectangles, 
ratios, and number sequences that share properties with the golden rectangle. Each 
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sequence of rectangles has a method of construction based on multiples or fractions 
of a unit square and three properties: a formula for the ratio of long to short side 
that is a generalized version of the golden ratio formula; a method for removing 
squares or fractions of a square to construct new rectangles with the same 
proportions and to generate spiral-like curves; and, a ratio of long side to short side 
that is the limit of the ratios of successive terms in a numerical sequence based on a 
generalization of the Fibonacci number sequence. 

I have given examples of only the first few rectangles in each sequence, but I believe 
that the possible rectangles might continue infinitely, with the golden rectangle being 
the first rectangle in each sequence. I think it's reasonable to conclude that some of 
the golden rectangle's most interesting mathematical properties are not unique. 

A Review of the Literature 

Researching the literature, you'll find several writers who debunk the false claims 
around the aesthetics of the golden rectangle while listing its special mathematical 
features. I hope that showing these features can be extended to other rectangles 
supports the position that the aesthetics of the golden rectangle are exaggerated. 

The math in this article is not original given that the properties of the golden 
rectangle are well established. I borrow proofs that are readily available from 
Wikipedia (see Golden ratio, Short proofs of irrationality), and from Dr. Ron Knott 
(see The Ratio of neighbouring Fibonacci Numbers tends to Phi). [7][18] Given the 
huge interest in this topic, I have expected to find that someone else already 
extended properties of the golden rectangle to other sequences of rectangles. 
However, as yet I have found no more than a suggestion of the potential for the 
properties of the golden rectangle to be extended. 

The fact that you can generate spirals from any rectangle, other than a square, is 
not new. (See Markowsky, page 2. [10]) One of the sequences I describe is based on 
the silver means which has been well documented by Knott. (See Solving Quadratics 
with Continued Fractions, The Silver Means). [7][14] It's been eighty years since Jay 
Hambidge described a design system incorporating the golden ratio and root 
rectangles based on √2, √3, √4, and √5. [5] Markowsky's point about spirals, 
Knott's suggestion of a rectangle sequence in the silver means, and Hambidge's 
rectangles each imply that you can extend properties of the golden rectangle. Yet the 
most commonly documented mathematical properties of the golden rectangle have 
seldom been recognized in other rectangles. In this article I generalize three 
properties of the golden rectangle to two sequences. I suggest this process may be 
used for finding more sequences of rectangles with the same properties. 

Books and articles extolling the wonders of the golden ratio usually show how the 
golden rectangle can be used to approximate a golden spiral, how it relates to the 
golden ratio, and to the Fibonacci numbers. The implication is that art and 
architecture employing the golden rectangle is superior by association. Thankfully, 
the mathematicians George Markowsky of the University of Maine and Keith Devlin of 
Stanford University, as well as astrophysicist Mario Livio, argue against the excessive 
claims made for the appearance of the golden ratio in art, architecture, and the 
antiquities. 

These writers separate fact from fiction regarding the aesthetics of the golden 
rectangle. They also demystify the occurrence of the golden ratio in nature. Keith 
Devlin has published at least two articles that bust the myths, available at MAA 
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Online. The first was in 2004: Good stories, pity they're not true. The second in 
2007: The Myth That Will Not Go Away. [1][2] George Markowsky countered many 
of the myths in his 1992 article, Misconceptions About The Golden Ratio. Markowsky 
was particularly thorough addressing the myths about design of the Great Pyramid of 
Cheops, the design of the Parthenon, and the paintings of Leonardo da Vinci. [10]  

The following sources include comprehensive general information, and the writers 
and contributors either debunk false claims for the golden rectangle's aesthetics, or 
qualify them with reference to the fact that others do not necessarily believe the 
claims: 

 Golden Ratio, Wikipedia. The contributors generally question the practice of 
applying the golden rectangle to aesthetics. [18] 

 Golden Rectangle, Wolfram MathWorld. The author, Eric Weisstein, 
concentrates on math, and mostly avoids aesthetics. [15] 

 Fibonacci Numbers and the Golden Section, Ron Knott's web site. Knott 
qualifies his survey of the Art, Architecture and Music by pointing out that the 
use of the golden section in the arts is a matter of opinion and speculation. 
[7]  

 The golden ratio and aesthetics, by Mario Livio. Livio cites psychology 
experiments while addressing myths of the golden rectangle in the arts. [9] 

 The Golden Ratio: The Story of PHI, the World's Most Astonishing Number, a 
book by Mario Livio. Livio addresses the art, architecture and other myths in 
depth. [8] 

In the interest of providing a balance of references, I refer you to: 

 The Divine Proportion, A Study in Mathematical Beauty, H. E. Huntley. 
Huntley's book is about the beauty of mathematics, and only occasionally 
perpetuates dubious claims such as the golden rectangle influenced the 
builders of the Parthenon. [6] 

Design systems have been based on various sets of rectangles, some relating to the 
golden rectangle. The following describe several that use construction methods 
similar to those of the rectangles I describe:  

 The Elements of Dynamic Symmetry, Jay Hambidge. Hambidge described a 
design system incorporating the golden ratio and root rectangles — rectangles 
with the proportions 1:√2, 1:√3, 1:√4, and 1:√5. The root rectangles are 
developed using a simple method where each rectangle is constructed from 
an arc of the diagonal of the previous rectangle. [5]  

 Canons of page construction, Wikipedia. The contributors describe various 
systems for designing books, especially those by Jan Tschichold, which are 
developed from simple numerical ratios as well as the golden ratio. [16]  

 ISO 216, Wikipedia. The International Organization for Standardization 
specifies sizes of writing paper based on the ratio, 1:√2.  

 Timeless by Design, Valrie Jensen. Artist Valrie Jensen describes 12 
rectangles, some of which are constructed in a way similar to the golden 
rectangle and Hambidge's root rectangles. 
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Figures 

 
Figure 1. First Sequence Rectangles  

 
Spiral-like curves from these rectangles are made by joining opposite corners of multiples of squares with 
a quarter-ellipse or a curve that appears tangent to the inscribed rectangle. 
 
 
 

  
 
 
 

Figure 2. Second Sequence Rectangles 

 
Spiral-like curves from these rectangles are made by joining opposite corners of fractions of squares with 
a quarter-ellipse or a curve that appears tangent to the inscribed rectangle. 



 
  

The Golden Rectangle and Sequences of Rectangles 
with Similar Properties (continued) 

Tables Return 

 Table 2. Second Sequence of Rectangles 
Table 3. Third Sequence of Rectangles 

Table 1. First Sequence of Rectangles 
Based on the Silver Means [7] 

   
Golden 

Rectangle 
1st Order 2nd Order 3rd Order 

Ratio Formula (a+b)/a = a/b 
(a+b)/(a-b) = 

a/b 
(a+b)/(a-2b) = 

a/b 
(a+b)/(a-3b) = 

a/b 

Solution, a/b  (1+√5)/2 1+√2 (3+√13)/2 2+√5 

Approximate value 1.61803 2.41421 3.30278 4.23607 

Sloane [11]  A000045 A000129 A006190 A001076 

Number sequence 
F(i) = F(i-1) + 

F(i-2) 
F(i) = 2F(i-1) + 

F(i-2) 
F(i) = 3F(i-1) + 

F(i-2) 
F(i) = 4F(i-1) + 

F(i-2) 

Unit squares to construct 
rectangle (1)  

0.5 1 1.5 2 

Squares to remove (2)  1 2 3 4 

  4th Order 5th Order 6th Order 7th Order 

Ratio Formula 
(a+b)/(a-4b) = 

a/b 
(a+b)/(a-5b) = 

a/b 
(a+b)/(a-6b) = 

a/b 
(a+b)/(a-7b) = 

a/b 

Solution, a/b  (5+√29)/2 3+√10 (7+√53)/2 4+√17 

Approximate value 5.19258 6.16228 7.14005 8.12311 

Sloane [11]  A052918 A005668 A054413 A041025 

Number sequence 
F(i) = 5F(i-1) + 

F(i-2) 
F(i) = 6F(i-1) + 

F(i-2) 
F(i) = 7F(i-1) + 

F(i-2) 
F(i) = 8F(i-1) + 

F(i-2) 

Unit squares to construct 
rectangle (1)  

2.5 3 3.5 4 

Squares to remove (2)  5 6 7 8 

(1) Unit squares to construct rectangle provide the length of the long side when the short side is 
one. The length is the value in the table plus the diagonal from one corner to the opposite corner 
of the unit squares. See Construction, First Sequence.  
(2) Squares to remove are the unit squares to remove when constructing new, progressively 
smaller rectangles with the same proportions as the first. See Spirals, First Sequence. 
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The Golden Rectangle and Sequences of Rectangles 
with Similar Properties (continued) 

Tables Return

  Table 1. First Sequence of Rectangles
Table 3. Third Sequence of Rectangles

Table 2. Second Sequence of Rectangles 

   
Golden 

Rectangle 
1st Order 2nd Order 3rd Order 

Ratio Formula b/(a–b) = a/b  b/(a–b/2) = a/b b/(a–b/4) = a/b b/(a–b/8) = a/b 

Solution, a/b  (1+√5)/2 (1+√17)/4 (1+√65)/8 (1+√257)/16 

Approximate value 1.61803 1.28078 1.13278 1.06445 

Number sequence 
F(i) = F(i-1) + 

F(i-2) 
F(i) = F(i-1)/2 + 

F(i-2) 
F(i) = F(i-1)/4 + 

F(i-2) 
F(i) = F(i-1)/8 + 

F(i-2) 

Unit squares to 
construct rectangle 
(1)  

1/2 1/4 1/8 1/16 

Squares to remove 
(2)  

1 1/2 1/4 1/8 

  4th Order 5th Order 6th Order 7th Order 

Ratio Formula b/(a–b/16) = a/b b/(a–b/32) = a/b b/(a–b/64) = a/b b/(a–b/128) = a/b 

Solution, a/b  (1+√1025)/32 (1+√4097)/64 (1+√16385)/128 (1+√65537)/256 

Approximate value 1.03174 1.01575 1.00784 1.00391 

Number sequence 
F(i) = F(i-1)/16 

+ F(i-2) 
F(i) = F(i-1)/32 

+ F(i-2) 
F(i) = F(i-1)/64 + 

F(i-2) 
F(i) = F(i-1)/128 + 

F(i-2) 

Unit squares to 
construct rectangle 
(1)  

1/32 1/64 1/128 1/256 

Squares to remove 
(2)  

1/16 1/32 1/64 1/128 

(1) Unit squares to construct rectangle provide the length of the long side when the short side is 
one. The length is the value in the table plus the diagonal from one corner to the opposite corner 
of the unit squares. See Construction, Second Sequence.  
(2) Squares to remove are the fractions of a unit square to remove when constructing new, 
progressively smaller rectangles with the same proportions as the first. See Spirals, Second 
Sequence. 

Copyright 2007 Joe Bartholomew  



  

The Golden Rectangle and Sequences of Rectangles 
with Similar Properties (continued) 

Tables Return 

  Table 1. First Sequence of Rectangles 
Table 2. Second Sequence of Rectangles 

Table 3. Third Sequence of Rectangles 
    1st Order 2nd Order 3rd Order 

Ratio Formula 
b/(a–2*b/1) = 

a/b  
b/(a–2*b/3) = 

a/b 
b/(a–2*b/5) = 

 a/b 
b/(a–2*b/7) = 

 a/b 

Solution, a/b  1+√2 (1+√10)/3 (1+√26)/5 (1+√50)/7 

Approximate value 2.41421 1.38743 1.21980 1.15301 

Number sequence 
F(i) = 2F(i-1) 

+ F(i-2) 
F(i) = 2F(i-1)/3 

+ F(i-2) 
F(i) = 2F(i-1)/5 

+ F(i-2) 
F(i) = 2F(i-1)/7 

+ F(i-2) 

Unit squares to 
construct rectangle (1) 

1 1/3 1/5 1/7 

Squares to remove (2)  2 2/3 2/5 2/7 

  4th Order 5th Order 6th Order 7th Order 

Ratio Formula 
b/(a–2*b/9) = 

a/b 
b/(a–2*b/11) = 

a/b 
b/(a–2*b/13) = 

a/b 
b/(a–2*b/15) = 

a/b 

Solution, a/b  (1+√82)/9 (1+√122)/11 (1+√170)/13 (1+√226)/15 

Approximate value 1.11727 1.09503 1.07988 1.06889 

Number sequence 
F(i) = 2F(i-1)/9 

+ F(i-2) 
F(i) = 2F(i-1)/11 

+ F(i-2) 
F(i) = 2F(i-1)/13 

+ F(i-2) 
F(i) = 2F(i-1)/15 

+ F(i-2) 

Unit squares to 
construct rectangle (1) 

1/9 1/11 1/13 1/15 

Squares to remove (2)  2/9 2/11 2/13 2/15 

(1) Unit squares to construct rectangle provide the length of the long side when the short side is 
one. The length is the value in the table plus the diagonal from one corner to the opposite corner 
of the unit squares.  
(2) Squares to remove are the fractions of a unit square to remove when constructing new, 
progressively smaller rectangles with the same proportions as the first. 
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